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J. Phys. A:  Gen. Phys., 1970, Vol. 3. Printedin Great Britain 

Approximate theories of thermal diffusion 

T. G. COWLING 
Department of Mathematics, The University of Leeds, Leeds 2 ,  England 
MS.  receiz’ed 28th April 1970 

Abstract. It is shown why any elementary theory of thermal diffusion must be 
inadequate if based solely on simple free-path ideas. A fairly elementary 
alternative theory is given, based on the assumption of a collision frequency 
that depends on the velocity. 

1. Introduction 
Approximate theories of viscosity, heat conduction and diffusion in gases appear 

in many text-books. They are normally based on the concept of the free path or (less 
often) the collision frequency; the one or the other is taken to have the same value for 
all molecules of a given gas or (what is roughly equivalent) a mean value of the 
quantity is used. The transport coefficients are found to be proportional to the mean 
free paths, or (in the case of a gas mixture) to a linear combination of them. Such 
approximate theories are useful because they give a simple illustration of the 
physical processes involved. However, their simplicity has its dangers as well as its 
advantages. 

One danger is because the molecules enjoy a dual role. On the one hand, they are 
‘carrier’ molecules ; their velocity distribution is somewhat different from that in a 
uniform gas, because of the property they are transporting (number of molecules, 
momentum or energy). On the other hand, they are regarded as forming a background 
of ‘field’ molecules, which impede the transport by the ‘carrier’ molecules. When they 
are viewed as field molecules, the deviation of their velocity distribution from the 
steady state (Maxwellian) value is ignored ; the collisions of carrier molecules with 
them are supposed to result simply in the surrender to them of the quantity being 
transported by the carriers.t So far as heat conduction and viscosity are concerned, 
this leads to no very great error. For diffusion the errors are more serious; conservation 
of momentum ensures that collisions between like particles do not destroy any common 
diffusion velocity possessed by both the carrier and the field particles. Thus collisions 
between like particles should be neglected in considering diffusion. A similar, but 
less obvious, correction is required if one is not to find that, starting with a gas at rest, 
one finishes one’s calculations with a gas which is moving bodily as a result of diffusion. 

More far-reaching difficulties are met in considering thermal diffusion. Whereas 
with the other transport phenomena a particular effect is due to a cause similar in 
nature (e.g. heat conduction is due to a temperature gradient), here the cause 
(temperature gradient) and the effect (diffusion) are different in nature. Thus, though 
one can argue that there is no reason why any macroscopic vector cause should not 
lead to any other vector effect, an approximate theory indicating how it happens is 
strictly desirable. Numerous attempts have been made to construct such a theory 
(Gillespie 1939, Furth 1942, Rai and Kothari 1943, Whalley and Winter 1950, 
Laranjeira 1960, together with others like Frankel 1940, Cacciapuoti 1943, Furry 1948, 

For a Lorentzian gas, the heavy molecules do in fact behave as ‘field’ molecules in the 
sense indicated : see Wright (1 970 b), 
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Wright 1970 a,b, which go beyond simple free-path ideas). None of the theories 
based purely on free-path ideas has proved adequate. This is shown not only by a 
comparison with exact general theory, but also by Frankel’s (1940) brief argument 
indicating why thermal diffusion depends essentially on the exact laws of interaction 
between unlike molecules. 

2. The formulae of exact theory 
Exact theory for a binary monatomic mixture shows that to a first approximation 

the thermal diffusion ratio k ,  is given, in terms of readily identifiable physical quan- 
tities, by the equation 

(1) 
( C  - 1) (x,m,X, - xZ”,A,> 
nkD1, (m,  + m,) 

kT = __. 

(Chapman and Cowling 1952-equations 9.8, 10, 11; 9.81, 1; and the equations for 
[A], and [kTI1 at the top of pp. 166 and 167). I n  this, D,,, A,, A, denote first approxi- 
mations to the diffusion coefficient and to the contributions by the two gases to the 
thermal conductivity; k is Boltzmann’s constant; m,, m2 are the molecular masses, and 
x,, x2 the molar fractions n,/n, n,/n of the two gases (n,, n2, n are the number densities 
of the two gases and of the mixture). Finally, C is a pure number whose value depends 
only on the temperature and the law of interaction between unlike molecules; it is 
connected with D1, by - 

3 d 
-(C-1) = 2-5“- In(pD,,) 
2 aT 

where p is the pressure and T the temperature. We may write 

where m12 denotes the reduced mass m,m2/(ml+m,) and nC represents a (so far 
undefined) mean collision frequency. Then (2) becomes 

5 a 
- (C- l )  = T -  1nC. 
2 8T (4) 

Monchick et al. (1966) suggested that the first approximation (1) also applies to 
diatomic and polyatomic gases, provided that A, and A, refer to the conduction of 
translational energy only. I n  a later paper, Monchick et al. (1968) found that small 
terms proportional to the conductivities for internal energy needed to be added ; they 
also pointed out that for such gases C is no longer given exactly by equation (2). 

I n  (l), K ,  has to be found by proceeding to a higher order of approximation than is 
required to determine the first approximation D12. Ignoring this discrepancy, we 
take Dlzk,  as giving the thermal diffusion coefficient DT. Then from ( 1 )  

(C - 1) T x,m,A, - x,m2A, 
DT = 

P ( M I  + mz) 
Any really satisfactory approximate theory of thermal diffusion must yield an equatior 
which mimics ( 5 ) .  

The  form of (5) clearly shows that no theory depending purely on the simple 
free-path ideas can be satisfactory. Such a theory attempts to express DT as a linear 



776 T. G. Cowling 

function of free paths. However, though A, and A, can be taken as roughly propor- 
tional to free paths for the two gases, the factor (C- 1) introduces a completely 
different effect. It is possible to express C as the ratio of two different mean free 
paths, each involving only the collisions of unlike molecules. Such an extra complication 
is not envisaged in simple free-path theories. 

The  relative velocity V of thermal diffusion arising from a temperature gradient V T  
is given by 

where q,, qz are the thermal fluxes - A,VT, - A,VT transported by the two gases. 
Thus V can be interpreted as arising from the fluxes q,, q,, which are the direct 
consequence of the temperature gradient. These fluxes are processed, at the collisions 
of unlike molecules, to lead to relative diffusion (by the conservation of momentum, 
collisions of like particles cannot create a diffusion velocity). The  value of the constant 
C is determined by the details of the processing mechanism. Equation (6), like those 
which precede it, represents a first approximation only; however, the same indication 
of a processing at the collisions of unlike molecules runs through the complicated 
formulae giving higher approximations. 

3. An elementary interpretation of exact theory 
The mechanism which processes ql, q2 to yield diffusion velocities is roughly as 

follows. Consider a mixture in which m, > m,; this normally means that A&,, the 
conductivity of the first gas per particle, is less than A2/n,. Heat conduction occurs 
because at any point the molecules of either gas coming from the hot side include more 
fast (energetic) particles and fewer slow ones than those coming from the cold side. A 
collision between molecules tends, on an average, to equalize their velocities. I n  
collisions between unlike molecules, if the probability of collisions is independent of 
the relative velocity, colliding molecules are simply a random selection of the whole ; 
the mean velocity of molecules m, and m2 before collision is zero, and collisions 
produce zero transfer of momentum from one gas to the other. 

However, the probability of collisions may increase or decrease with the relative 
velocity g of the colliding molecules. For rigid spherical molecules it is proportional 
tog ; for inverse-square interaction the effective cross section is proportional and 
the collision probability to g-3. If the probability increases with g, the colliding 
molecules are no longer a random selection but are weighted towards large values of g, 
and so towards large velocities of the colliding molecules. Since heat conduction 
requires that more fast molecules are moving down the temperature gradient than up 
it, the weighting implies that there is an unbalanced transfer of total momentum from 
each gas to the other at collisions. As a consequence of the heat flux ql/n, per molecule 
m,, the first gas exerts a force K ,  qJa1 per unit volume on the second through collisions, 
and experiences an equal and opposite force - K ,  ql/n, ; similar forces K~ q&, arise 
from qz/n,, the heat flux per particle carried by the second gas. The  total force per 
unit volume acting on the first gas is 

and that on the second gas is equal and opposite. 
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The  quantities K,, K~ in (7) are proportional to the number N12 of collisions 
between unlike molecules per unit volume and time, and also to the efficiency of the 
process which converts heat flux into momentum transfer. This efficiency is greater 
for q2 than for q,, since it depends on g, which is determined predominantly by the 
larger velocities of the lighter molecules; thus K ,  < K ~ .  The forces on the gases 
produce a diffusion velocity V of the first gas relative to the second, which increases 
up to the point when the resistances T K’V (say), acting on the gases because of the 
collisions of unlike molecules, balance these forces. Thus the final V is given by 

K2 K 1  

n2 n1 
K ’ V  = -q2-  - q1. 

Equation (8) agrees in form with (6); since K~ > K ,  and X2/n2 > X,/n,, it correctly 
indicates that the heavy gas tends to diffuse towards the cooler regions. If m, and m2 
are nearly equal, the same is true of K ,  and K ~ ;  in this case the gas diffusing towards the 
cooler regions is that corresponding to the lesser of X,/n, and X,/n,, which is the gas 
with the larger molecules. Since K ’ ,  like K ,  and K ~ ,  is proportional to N12, (8) indicates 
that V is proportional to the ratio of two quantities each proportional to the frequency 
of collisions between unlike particles, like the (C- 1) in (6). Thus we have been able 
to derive an approximate formulae which does indeed mimic (6). 

I n  deriving (8) we assumed that the probability of collision increases with in- 
creasing g. If the reverse is the case, the signs of K ,  and K~ in (8) are reversed; this 
still agrees with (6), since then, by equation (4), (C- 1) is negative. 

The  argument set out in this section is similar to that of Frankel (1940). However, 
whereas Frankel asserted that thermal diffusion occurs (in the case C- 1 > 0) 
because the lighter molecules are held back from diffusing into the cooler regions, here 
we ascribe it to the lighter molecules actively pushing the heavy ones into the cooler 
parts. 

4. A semi-elementary theory: heat conduction and diffusion 
A theory leading to the actual formulae (4) and (6) requires some knowledge of the 

velocity distribution functions of the gases. Such a theory is no longer an elementary 
theory in the sense so far used; it demands integrations similar to those used in the 
general theory. It may, however, be of some interest to indicate, in as elementary a 
way as possible, how such a theory can be constructed. 

I n  large measure the notation of Chapman and Cowling (1952) will be used; in 
particular, c,, c2 denote molecular velocities, a/ac, denotes a gradient in velocity- 
space and dc, a volume-element in velocity-space. However, somewhat modifying 
that notation, the velocity distribution functions for the two gases will be denoted by 
n,f,, n2f2. Thus, for example, the Maxwellian velocity distribution for the first gas at 

For simplicity we shall use the collision interval rather than the free path. I n  
discussing heat conduction it is sufficient to regard the collision intervals T,, T~ for 
molecules of the two gases as independent of the velocity. (They are ‘ideal’ collision 
intervals, adjusted to take account not only of the frequency of collisions but also of 
their efficiency in obstructing the transport of heat). Thus a molecule m, reaching the 
point r with velocity c, can be regarded as having undergone its last collision, on 



778 T .  G. Cowling 

an average, at the point r -  c l r l ,  and to have properties characteristic of that point. This 
means that the velocity distribution in a gas at non-uniform temperature (but uniform 
composition and pressure) is given to the first order in T ,  by 

fl,(r>f1(c,, r )  = n d r -  c l ~ l l f l ( o ) ( c l >  r -  C l T d  

= ~ l ( r ) f l ( o ) ( c l ,  r1)- C l T 1  v ( ~ l ( r ) f l ‘ O ~ ( c l ,  r ) )  
or, since the partial pressure p ,  ( = n,kT) is uniform, 

The heat flux corresponding to this is 

Q1 = 1 ~ m l C l % ~ l f l  dc1 

Hence A, = +p ,~ ,k /m, ,  and (10) can be written 

The form of the relation connecting A, and T ,  is unimportant; the important feature is 
the expression (12) forf,. This agrees with the first approximation of Chapman and 
Cowling (1952), adjusted to give the conductivity Al. 

I n  discussing diffusion we no longer assume a constant collision interval, because 
of the need to derive an equation like (4). We introduce a quantity v(g), such that if a 
uniform stream n,’ per unit volume of molecules m, with velocity c ,  is moving through 
a similar stream, n2’ per unit volume, of molecules m, with velocity c,, the number of 
collisions between molecules of the two streams per unit volume and time is nl’n2’v(g), 
where g = c,-c , .  The collisions again are ideal collisions; they cannot alter the 
total momentum of the colliding molecules but are supposed to change their velocities 
to values which, for each molecule, are scattered randomly about a mean value equal 
to the velocity G of their common mass-centre, given by 

(m,+m,)G = m,c,+m2c2. (13) 
This means that at each collision the molecule m, receives, on an average, the momen- 
tum m,(G- c l )  = m12g, where m,, again denotes the reduced mass m,m,/(m,+m,). 
Similarly the molecule m2 loses this momentum. 

The  velocity-distribution functions during diffusion are taken to be Maxwellian 
functions relative to the diffusion velocities C,’,  c,’ as means. Thus now 

kT 
a g o )  

ac, 
f,( c,)  = f,‘”( c ,  - c, ’) N f$”( c,)  - c,’ . - = fJ0) (1 + 
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and similarly f0rf2. The  total rate of transfer of momentum per unit volume from the 
second gas to the first at collisions accordingly is 

The  part of (15) arising from unity in the bracket is the integral of an odd function 
of the velocities, and so vanishes. The  remaining part is evaluated by expressing 
c,, c2 in terms of G, g by the relations 

(16) 
m1g , c,=G+-------. C , =  G -  ~ 

m, + m2 m1+ m2 

m2g 

At the same time dc, dc, can be replaced by dG dg, andf,(o'f,(o) byF(Olf(O), where F0), 
f(O) are Maxwellian functions similar tofl(0),f2(0), but involving G,  g as velocities, and 
m, + m2, m12 as masses. Then on carrying out the integration with respect to G,  (15) 
becomes 

where V is the velocity of relative diffusion, c,' - c2'. We define a mean value i; of v(g) 
by the equation 

Then the momentum transfer (17) becomes 

- n,n,i;m,,V. (19) 

If the molecules m,, m2 were set diffusing by total forces P ,  - P  per unit volume 
acting on them, P would have to balance the rate (19) of transfer of momentum. Thus 
the velocity of diffusion V due to forces 5 P is found to be given by 

P = n,n,i;m,,V. (20) 

According to the general theory of diffusion, this is equivalent to 

Hence 
nD12P = n,n,KTV. 

nD,,i; = kT/mI2 

showing that ; is identical with the ; of equation (3). By the definition (18), n2;, n,; 
denote the mean collision frequencies of molecules m,, m2 respectively, and the col- 
lision frequency n; of $ 2  is the sum of these. 

5. A semi-elementary theory: thermal diffusion 
The discussion of thermal diffusion proceeds in much the same way, takingf, and 

f2 to be given by (12) and a similar equation. There is a transfer of momentum P per 
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unit volume and time from the second gas to the first at collisions, given by 

p = a182 jJf1fzm12g .(g> dc, dc2 

the part of the integral involvingfl(O'f,(0) vanishing as before. 
Since, by equation (9), m,f,(O)/kT involves ml and T only in the combination 

m,/kT, 
- m, L am, pfJo)j, k T  

Hence in (22), if we regard v(g) as independent of m,, 

The integral in this, like the corresponding integral in (15), is evaluated by changing 
the variables of integration to G and g. The resulting expression is 

Here m,,f(O)/kT involves m12 and T only in the combination m,,/kT; hence, by an 
argument inverse to that just used, this expression is equivalent to 

using equation (1 8). 
The  part of (22) involving X2 can be similarly evaluated. Thus (22) becomes 

2m12 a; 
5k(m, + m2) 2T 

P =  - (n2m2X, - n,mlA2)V T .  

Since P ,  - P  are to be regarded as forces acting on the two gases per unit volume, by 
equation (20) they produce a diffusion velocity V given by 

The expressions for f ,  and f2 given by (12) and a similar relation strictly need to be 
modified to allow for this diffusion velocity. 

Equation (25) is identical with that derived from (4) and (6). The  identity is not 
surprising. The  integrations carried out here are equivalent to those of Chapman and 
Cowling (1952), though more simply expressed. Also the approximations made are 
those required to give agreement with the first approximation to exact theory. Seen by 
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themselves, they are not always consistent, e.g. in discussing diffusion the collision 
probability is supposed to depend ong, whereas the form (14) for f, strictly requires no 
such dependence. 

Laranjeira (1960) found by approximate theory that if ml/m2 is large the thermal 
diffusion factor M,, k,/x,x2 varies roughly inversely as a linear function of the 
proportions x,, x2. This result is also directly deducible by the present method. If 
ml/m2 is large, A2/A, is in general large also; hence from (l), approximately 

since A2 = #px ,~~k /m , .  In  this, nDI2 is to a first approximation independent of 
density and composition; T ~ - ~  is a collision frequency, which is a linear function of 
n, and n2. Hence tc12-1 is a linear function of x ,  and x2, which is Laranjeira’s result. 
Laranjeira found that experimental results often suggest a similar linear dependence 
even when ml/mz is not very different from unity; this is to be expected only if T , / T ~  is 
nearly independent of the composition. 

By inverting the steps of the argument of this and the preceding section, a theory 
of the diffusion thermo-effect can be given. As is to be expected, it agrees with the 
exact theory to a first approximation; if the total number-flow of molecules is zero 
(n,c,’$ nzcz‘ = O), a diffusion velocity Vis found to lead to a heat flux equal to$kTv, 
or 

2 m12 (n,m,A, - n,m2A,) 
5 k (m,+m,) d T  

dl; 
T -V (26) -- 

(cf. equations ( l ) ,  (3) and (5)). 

6. Conclusions 
The theory given above strictly applies only to monatomic gases, and needs modifi- 

cation when applied to gases whose molecules possess internal energy. I n  § 4 the 
‘ideal’ collision interval T ,  was assumed to be adjusted to take account of the efficiency 
of collisions in obstructing the flux of energy. Since the efficiency is different for 
translational and internal energy, two different collision intervals T,, 7,’ must now be 
introduced, referring respectively to the translational and internal energies : correspon- 
ding to these, there are contributions A,, A,’ and ql,  q,’ to the thermal conductivity 
and heat flux. If v(g)  is still regarded as depending only on g, and not on the internal 
energies of the colliding molecules, the translational and internal energies are effectively 
uncoupled, and equations of the form ( l ) ,  (2) and (25) remain valid, the quantities 
AI, A, and q,, qz referring to the transport of translational energy only. 

More correctly, v(g) should be replaced by a quantity depending on the internal 
motions as well as on g. I n  this case, small terms involving the internal-energy fluxes 
q,‘, 4,‘ appear in the equation (6) for the diffusion velocity; also the constant (C- 1) 
in the translational term is no longer given exactly by (2). The  equation (1) 
can still be used as an approximation, taking A, and A, as referring to the translational 
conductivities, but some disagreement with (2) is then to be expected. Results given 
by Monchick et al. (1966) suggest that the experimental values of (C - 1) then found are 
often smaller than the values given by (2), and I have found similar results. A 
decreased value of (C- 1) would presumably imply a decreased efficiency in the 
conversion of heat fluxes into diffusion velocities through collisions. I have not been 
able to obtain a general proof that a decrease is to be expected. 
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Clearly the observed dependence of k, on the distribution of mass in isotopic 
molecules (Becker and Beyrich 1952, de Vries et al. 1956, Schirdewahn et al. 1961) is 
to be explained as an effect of the internal energy of the molecules. Another effect 
which may have a similar explanation is the anomalous temperature variation in 
mixtures containing carbon dioxide, which appears to imply that (C- 1) passes 
through a positive minimum at relatively ordinary temperatures (Cozens and Grew 
1964). The simple theory given here is able to indicate these possibilities, but it 
cannot fill in the details. 
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